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THE PARAMETRIZED STRONGLY IMPLICIT METHOD 
FOR SOLVING ELLIPTIC DIFFERENCE EQUATIONS 
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SUMMARY 
A new method for solving elliptic difference equations is derived based on the strongly implicit method. This 
parametrized strongly implicit method has three free parameters which may be functions of the field‘s nodal 
point. The method has some resemblance to the SOR techniques, but in the present method the off-diagonal 
entries are also over-relaxed. The main application of this method is for transport equations such as those 
governing the fluid flow and heat transfer fields. 
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INTRODUCTION 

A numerical approach to solving an elliptic partial differential equation using finite difference 
techniques leads to the sparse algebraic system 

CAI {@I = PI (1) 

where (0) is an rn-element variable vector, [ A ]  is an m x m coefficients matrix and ( D )  is an m- 
element source vector, where rn is the number of grid points spread over the spetial domain of 
solution (say rn = rnl x m2 for a rectangular domain). Usually, for transport phenomena, [ A ]  is a 
non-symmetric matrix. A direct solution of equation (1) is very inefficient sometimes even for 
symmetric matrices [ A ] ,  and most of the time cannot be applied since usually m is very large. For 
large systems, equation (1) is usually solved by iterative procedures. The iterative procedures are 
very commonly divided into two classes: (1) the basic iterative techniques such as SOR, ADI,’ 
strongly implicit (SI)2 and modified strongly implicit (MSI)3 among others; (2) the acceleration 
techniques where gradient methods are used to solve equation (1) iteratively; these methods are 
usually preconditioned by some incomplete LU decomposition or by any of the procedures in 
class ( l ) . ’ - I 2  Usually the methods of class (2) are faster than those from class (1). However, for a 
non-symmetric matrix [ A ]  which is also blocked (meaning that we have to solve more than one 
variable at any grid point of the field) the rate of convergence of the acceleration methods slows 
down dramati~al ly .~ Therefore the basic iterative methods are still widely used, and thus it is 
important, if it is possible, to improve them. 

In the past we have presented a modification to the classical SI m e t h ~ d , ~  in which, in addition to 
the standard algorithm, the variables are solved implicitly along the diagonals of the comput- 
ational domain. This algorithm is a general modification of the SI te~hnique,’~ which improves the 
rate of convergence. One of the reasons for the slow rate of convergence of iterative techniques of 
the SI procedure type is due to the asymmetry of [ A ] .  The idea in the present study is that the rate of 
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convergence might be increased by inserting certain free parameters into the SI and the MSI 
schemes' coefficients, in such a way that the weighting between the implicit and the lagging parts in 
the algorithm can be optimized, leading to a higher rate of convergence. This idea is very similar to 
the SOR method, which improves the classical one point iteration methods (such as the Gauss- 
Siedel (GS) and the Jacobi iteration techniques among others). This new method, the parametrized 
strongly implicit (PSI) algorithm, will be described and discussed in the present paper. 

THE PARAMETRIZED SI (PSI) ALGORITHM 

Considering the solution of equation (I), let (i,j)[l ,< i ,< m , ,  1 < j  d mz]  be the indices of any 
discrete points in the two dimensional computational domain, then the variable @ i , j  at any point 
(i,j) can be calculated from the following recursive algorithm: 

(2) @!"! 1.3 = bi,j@:;]+ 1 + ci,j@p) , , j  + + pij@$?J + yi,j@p;ly + ai,j@:y l )  

where n is the iteration level index, and ?"=([B],[C],[d],[a],[fl],[y]) is a group of two 
dimensional coefficient matrices. Equation (2) presents a general family of procedures to solve 
equation (1) iteratively, where the elements of the coefficients matrices in Tare related to the entries 
of the matrix [A].  The equation presents, in general, the PSI algorithm, where the standard SI 
procedure can be derived by assuming 

[a1 = [PI  = CYI = 0 (3) 

In order to relate the iterative scheme, equation (2), to the equation to be solved, we have to write 
the nodal relation for equation (1): 

.q jOi+ 1.j + Ni,j@i,j+ 1 + Wi,j@i- 1 , j  + Si,j@i,j- 1 + Pi,j@i,j + Vi,j = 0 (4) 

where [E l ,  [W] ,  [ N ] ,  [S]  and [PI are known coefficients matrices, and [ V ]  is the source term. The 
relation between the algorithm coefficients in equation ( 2 )  and the algebraic system to be solved, 
equation (4), can be obtained by assuming that all the elements participating in this equation 
are under or over-relaxed: 

(1 - E~)Ei,j@p) 1. j  + (1  - E~)N~,j@ijlj)+ -k (1 - Ew)Wi,j@I") 1 , j  + (1 - Es)si,j@& 1 

+ (1 - (1 - &p)Pi,j@:y + &EEi,j@y!l!j + E"i,j@:fjTel) + EWK,j@jI : ! j  

+ &ssi.j@f;y + &pPi,j@$- l )  + Vi,j = 0 (5 )  

where E ~ ,  E ~ ,  c N ,  E~ and ep are predetermined parameters which may be function of the point (i, j). AS 
these parameters are different from zero, only a fraction of every term appearing in equation (4) is 
treated in the new iteration level n. Substitution of the PSI algorithm, equation(2), into 
equation (5) will give the following relations between the various coefficients' matrices: 

b. 1 . J  . = F. 1 . J l . J  . N .  (1 - E N )  

C i J  = Fi,jEi.j( 1 - C E )  
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(60 

where 

Thus, the requirement that the present algorithm, equation (2) ,  will resemble the SI procedure 
reduces the number of free parameters from five to three. The standard SI procedure can be 
recovered by assuming 

(7) EN = EE = Ep = 0 

The nature of the PSI algorithm may be understood in the following way. 
The system matrix [ A ]  has the following form 

[A1 = EL1 + EM1 + EUl (8) 

where [L] and [ U ]  are strictly lower and upper matrices defined by 

Wi,j, ii = i + (m,  - l)j, i, = i - 1 + (m,  - 1 ) j  
if i ,  = i + (m,  - l) j ,  i2 = i - 1 + (m,  - 2) j  (94  

i f  i ,  = i + (mi - 1)j, i ,  = i + 1 + (m,  - 1 ) j  
if i, = i + (m,  - l)j,  i, = i + 1 + m,j (9b) 

Pi,j,  if i, = i, = i + (m,  - 1)j M .  . = (94 

Constructing the PSI algorithm, we first define three two-dimensional matrices [a ] ,  [PI and b] 
with the restriction 

[ai,jand y , , J ( i  = m, ,  1 < j < m,) = [Pi,jand I X ~ , ~ ] ( I  < i < m , , j  = 1 )  = 0 (10) 

In order to study the scheme formulated in equations (2) and (6), let us define the matrix [ H I  to be 

1 
j = - ~ (ai- 1, j @ i -  1, j +ai , j - t@i . j - l  + Pi , j@i , j+1  + Y i , j @ i + l , j ) - P i , j & p @ i , j  (11) 

Fi, j 

A resemble of the under/over-relaxation feature of the PSI algorithm can be achieved by adding 
equation (1 1) to equation (l)[or equation (4)], defining the following iteration procedure: 

[N]@" = + D ( 12a) 
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where 

"1 = CAI + CHI 
Following equation (9), the matrix [N] has the following structure: 

where 
"1 = CLNl + EA1 + c u N 1  

' i - l~j ,  i f i , = i - ( m l - ~ ) j , i z = i - ~  - ( m l - l ) j  

@i,j-1 if i ,  = i -- (m, - l)j, i, = i - 1 + (ml - 2)j LNi i , rz  s. , 
F i , j  ' 

0, elsewhere 

(0 ,  elsewhere 
and 

where E,, may be a function of the nodal point i, j. 
The next step is similar to what has been done in References I and 3, where a [GI@ term was 

added to the iteration (12a), in order to make the left hand side of equation (12a) factorable in the 
following way: 

([N] + [GI)@" =([HI + [G])@"-' + D (15) 

"1 + = ( C L N 1  + [Al)[Al-l([Al + c U N l )  (16) 

where [GI has the following feature: 

and [A] is a diagonal matrix. 

defined as the following sum: 
Considering the right hand side of equation (16), we assume that the [HI + [GI matrix can be 

CHI + [GI = [TI + EQI 

[TI =(CW + [Al)[Alr1([A,1 + W T 1 )  

(17) 

(18) 

where [TI is defined as 

where [A,] is a diagonal matrix and [U , ]  is strictly upper diagonal matrix. As it turns out, the PSI 
procedure has enough free parameters, so that equation (18) can be satisfied together with the 
following definitions of the [U,], [Q] and [A,] matrices: 

A ~ * . P [ t = i + ( , - i t ) ~ , j  - ai,j ( 194 

i f i l = i - ( m , - l ) j , i z = i + l + m , j  (19b) 
if i ,  = i - (ml - I)j, i, = i + 1 - (m,  - I ) j  

elsewhere 
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( w ~ , ~ + ~ ~ - ~ , ~ ) ( B ~ - ~ , ~ + & - ~ , ~ ) ,  i f i l = i - ( m l -  l ) j , & = i +  1 -(ml-2)j 
QilriZ= (S'i,j+ai,j-1)(Ci,j-1 +~i, j- l) i , j ,  if i l = i - ( m l -  l) j , iZ=i+ 1 + m , j  (19c) c elsewhere 

From equations (14)-( 19) we can derive the following two steps per iteration that the PSI algorithm 
defines: 

where g is an intermediate vector of results. Again it can be seen that for [AT] = [UT] = 0 the 
standard SI procedure is recovered. 

The PSI algorithm will converge if the error series en = @") - @(exact) converges to zero. The 
iteration matrix [B] defined by 

(21) 

[B1 =([A] [UNI)-'([AI([L] CAI)-'CQl+ [AT] [UT]) (22) 

e'"' = [B-Je("- 1 )  

can be computed for the PSI algorithm to be 

and the only condition for that algorithm to be convergent is12 that A the spectral radius of [B], 
should be less than 1. Also the rate of convergence of the algorithm, p, is a monotonic function of A, 
defined by 

p =  -ln(A) (23) 
Therefore, it is obvious that as 1, becomes smaller, the rate of convergence is higher. Thus, 
theoretically we can maximize p with respect to the three free parameters of the scheme. However, 
trying to check the spectral radius for the standard SI algorithm,* even for very simple problems 
(such as V2@ = 0 on an equal spaced grid) is extremely dificult. Therefore it can be understood why 
it is almost impossible to carry out the optimization for the PSI algorithm. Hence, in the present 
paper, we present some special cases, for which we try to optimize the rate of convergence of the PSI 
procedure. Although it is not general, we can get some feeling about the near optimal procedure's 
parameters, which might lead to more general conclusions. 

EXAMPLES 

In this section, some simple examples and special cases will demonstrate the use and the 
advantages of the PSI technique. We do not expect that these examples will lead us to a definite 
conclusion about the method, but they might have some effect on the choice of the algorithm's free 
parameters. 

Case I: E~ = E,,, = 0 

and [U,] = 0 and [U,] = [U]. Therefore the iteration matrix is 
This case is very similar to the successive over-relaxation technique. Here [HI is a lower matrix 

CBI=(CAl+ CUI)-'([AI(ELI + CAl)-'[Ql+ CA2-1) (24) 
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If c p  is not a function of the nodal point, then the spectral radius is given by the following equation: 

where Y is the eigenvector belonging to 1. For the case where e p = 0  we get the standard SI 
procedure with the spectral radius of 

p = l ( E p  = 0) (26) 

Equation (25) has been solved numerically for example 1 of Reference 5. Figure 1 describes the rate 
of convergence ratio 

In A K = -  

as a function of c p  For this Laplace equation example, Figure 2 shows the residuals in the L, norm 
as function of the number of iterations for two different grids. It can be seen that the ratio K is the 
same for both grids. It is interesting to note that after many iterations (when the residuals are small), 
the PSI algorithm produces a periodic-like behaviour for the residuals, whereas the residuals of 
the SI algorithm still converge monotonically. The main conclusion from this case study is that 
for every z p  > 0, the PSI procedure is better than the corresponding SI procedure. 

In P 

Case 2: E~ = 0, EE and eN # 0 

those of the non-central point. For the simple case where 
In this case the only coefkients that are going through the underlover-relaxation process are 

&E = = & 

I I I I I 

0.5 
6, 

0. 0.1 0.2 0.3 0.4 

Figure 1. Rate of convergence for case 1 
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the equation for the spectral radius is 

n([L]+[A])[A]-' [A]+[U] l - & + -  Y=[G]Y (27) i ( 91 
where Y is, again, the eigenvector. This equation was solved for the same example as in case 1, with 
41 x 41 points. Figure 3, which presents the ratio A/p shows that, as E differs from 0, the SI 
procedure is better than the PSI procedure for p # 0. This should not be a surprise since also for 
other methods' (such as, for instance, the AD1 method) it is known that their performance cannot 
be improved when only the off-diagonal entries of [A] are under/over-relaxed. However, this does 
not mean that one cannot find such an E that together with E,, # 0 will give a rate of convergence 
which is higher than when E = 0. 

SOME REMARKS ON OTHER POSSIBLE PSI PROCEDURES 

The study in the last section tends to indicate that the only possibility to get a rate of convergence 
with the PSI procedure which is faster than that of the SI procedure is by under/over-relaxation at 
least the diagonal terms of [A]. In addition to the algorithm presented in the first section, it is 
possible to formulate some other PSI-like procedures, two of which follow. It can be seen, from 
equation (20), that the SI algorithm can be written as 

([L] +[A])[A]-'([A]+[U])@"=D+[Q]@"-' (28) 

[ I p n  = [I]@"- ' (294 

Such algorithms can be formulated by taking w times one of the following equations 

([L] + [A])[A]-l@" =(EL] + [A])[A]-'@"-' (29b) 

and adding i t  to 1 - o times equation (28). w can be a function of the nodal point (i, j). The iteration 
matrices for those two cases are: 

C ~ l l = ( C ~ 1 + [ I ~ l + ~ ~ ( I ~ I C ~ 1 - ' + C ~ l - E ~ l - C ~ 1 ~ ~ - ' I I ~ I ~ C ~ l  

[ I ~ 2 1 = ~ C ~ l + C ~ l - ~ ~ E ~ l + E ~ l - C ~ l ~ ~ - ' E ~ I ( C ~ 1 + E ~ l ~ - ' ~ E ~ I  

+ CAI)-'"l+ w( [ l I l -  [GI) )  (304 

+w(cLIIIAl - l  + C ~ I - C G l ) )  (30b) 

for equations (29a) and (29b) respectively. It should be noted that the [BJ iteration matrix involves 
also parametrization of the off-diagonal entries of [A]. Since the optimal w cannot be found 
analytically, these schemes were tested on the Laplace equation. It has been found that for the [B,] 
case, the optimal w was around w1 % 0.38 with In AJn p z 2.6, and for the [B2] case, the optimal w 
was obtained for w2 % 0.46 with In AJln p % 2.4. Thus, it might be possible to get a higher rate of 
convergence in cases when all the three parameters are under/over-relaxed than in case when only 
the diagonal parameter E~ # 0. 

To conclude this study, a test case with non-symmetric [A] was chosen: the incompressible two 
dimensional steady state flow inside a driven cavity as is describe in Figure 4, which is a well known 
problem for testing numerical schemes in fluid dynamics. l4 
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0. 4. 

Figure 4. Example of the driven cavity field 

The governing equations are the following ($5) relations: 

where the velocities u(x, y ) ,  v(x, y )  are defined by 

a$ 
aY 

u=- 

a$ v =  -- 
ax 

and where $ is the flow stream function, 5 is the flow vorticity and R is the flow Reynolds number. 
The solutions for this problem are well established and discussed in many papers4 Since 
equation (31a) is of the Poisson type, then the optimum situation is similar to that of case 1 : cE = 
cN = 0. Since two variables are involved, cp will now be a vector defined by e p  = (a1, 0 ~ ~ ) ~  for the 
vector (yi, t) in this equation. On the other hand, equation (31 b) is like a one variable equation and 
we will assume that all the three parameters are different from zero since it is a convection- 
diffusion-like equation. We will assume furthermore that e p  = w4 and eN = cE = w2 for this 
equation. Also we will assume that all the parameters do not depend on the nodal point (i, j) but 
they are sensitive to the Reynolds number. This means that as R+O, w3+w1, and w4-'0. 

Figure 5 presents the variation of some optimal parameters and the optimal rate of convergence 
as functions of the Reynolds number, with the assumption that o1 = w3 and w4 = 0. The last 
assumption means that the diagonal of equation (31a) is over-relaxed with w1 and the off-diagonal 
terms of equation (31 b) are over-relaxed with w2. Figure 5 depicts the variation of the ratio of the 
optimal parameters w2/01 as functions of the Reynolds number for three cases. The first is the PSI 
algorithm with the above assumptions; the second two cases are the two methods described by 
equations (30) where o1 is used for equation (3 1 a) and o2 is used to over-relaxed equation (3 1 b). It 
can be seen that all these cases are superior to the SI procedure, and for a transport equation which 
is convection dominant, the optimum rate of convergence might be achieved for cE and eN # 0. It 
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implicit techniques are like one dimensional iterative procedures and the application of 
under/over-relaxation to them is much more easy then for the SI technique. That is because the SI 
technique is a two dimensional iterative procedure and application of the SOR idea directly to the 
algorithm will not be a benefit. We have found that the right way to do it is through the PSI 
algorithm where also the off-diagonal terms are under/over-relaxed. Applying the PSI procedure 
without parametrizing the off-diagonal coefficients to systems which are convection dominant, will 
give almost the same rate of convergence as that of the SI. On the other hand some computational 
experiments have shown that high rate of convergence can be obtained for high Reynolds number 
flows when attention is given to over-relaxing also the off-diagonal system’s coefficients. The 
present paper comes basically to present the PSI algorithm and to describe some preleminary 
study of it. Obviously, some more study has to be done before making any final conclusions in 
comparing it to other iterative methods of the same type. 
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